

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

1

In memory of Gene H. Golub, co-founder of

Accelogic’s Research Program on Acceleration of

Numerical Software

Abstract— The developments seen in the field of reconfigurable

computing during the last ten years bring an unprecedented

opportunity for the acceleration of supercomputing applications

in computational fluid dynamics (CFD). Reconfigurable

computing algorithms implemented in Field-Programmable Gate

Arrays (FPGAs) have proven to be orders of magnitude faster

than traditional CPU-based solutions.

It is estimated that over seventy percent of supercomputer

CPU cycles worldwide are spent solving large-scale linear algebra

problems. Accelogic is developing unique algorithmic innovations

that will enable a single FPGA chip to surpass the performance of

a CPU cluster for solving large-scale linear systems. This

technology has the potential to reduce both cost and power

consumption by one to two orders of magnitude, while

maintaining code portability and ease of use for FORTRAN and

C environments.

We show our recent results in this direction, including insights

on why and how things can go wrong when designing FPGA

supercomputing kernels, and why the common-wisdom approach

of “porting” or “translating” the algorithms into the FPGA has

not delivered the promised levels of performance for CFD. We

discuss the critical factors of success behind Accelogic’s latest

60x-speedup narrowband linear solver – the fastest FPGA linear

solver at the time of writing.

Index Terms— Linear algebra, Algorithms, Field

programmable gate array, FPGA, Matrix decomposition, Digital

arithmetic, LU, Band solver.

Manuscript written July, 2007. Revised November, 2010, and September,

2014. Released for publication September, 2014 by Accelogic, LLC.

This work is subject matter of U.S. Patent #7,849,126, and was supported

in part by NASA under contracts NNX07CA19P and NNX10RA04C.

J. Gonzalez is with Accelogic, LLC, Weston, FL 33326 USA (e-mail:

juan.gonzalez@accelogic.com).

R. Nunez is with Accelogic, LLC, Weston, FL 33326 USA (e-mail:

rafael.nunez@accelogic.com).

The authors wish to thank Gene H. Golub (R.I.P) from Stanford

University, and Jack Dongarra from the University of Tennessee, for their

consultation on this project.

I. INTRODUCTION

ECONFIGURABLE computing with FPGAs has emerged

within the last years as a viable alternative for very low-

cost high-performance supercomputing. Speedups over

traditional single-CPU systems on the orders of hundreds, and

even thousands, have been demonstrated for specific domain

applications during the last years.

The fields of partial differential equations and numerical

linear algebra, perhaps the most important ones in high-

performance computing, have not escaped to acceleration

attempts made by FPGA programmers and developers.

However, results in this direction have not been very

successful so far. Researchers have been able to demonstrate

single-digit speedups at most, and many of the proposed

solutions lack both portability and ease of use.

This paper reports the results from Accelogic’s

reconfigurable computing research program on numerical

linear algebra, which aims at conceptualizing and developing

the world’s fastest FPGA-based solver for large-scale linear

equations, a single-FPGA system with performance

comparable to that of ScaLAPACK running on a 4,096-CPU

supercomputer. Besides the direct breakthroughs in terms of

speed performance enabled when using and scaling this

technology, this type of solver can also bring a one to two

order-of-magnitude reduction in both cost and power

consumption, while maintaining code portability and ease of

use for Fortran and C environments via simple and easy-to-use

APIs.

A working demonstration of the reach and impact of

Accelogic’s approach is presented through a proof-of-concept

prototype that exhibits a 60x performance speedup when

compared to LAPACK running on the fastest CPU available at

the time of writing. The high performance of this prototype

successfully shows the feasibility of the architectural design

and the algorithmic innovations proposed by Accelogic to

reach a 4,096-node performance target.

The key to the technical and commercial success of this

work lies on four mission-critical areas, two of them

algorithmic (algorithmic speed balance, and communication

speed) and two of them related to the industrial quality of the

The Art of FPGA Algorithm Design – The

Case for the Extreme Acceleration of

Linear-Algebra-Intensive Software

Juan Gonzalez and Rafael Nunez
Research Division, Accelogic, LLC

 [juan.gonzalez, rafael.nunez]@accelogic.com

R

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

2

product (portability, and ease of use). The entirety of the work

gravitates around these four mission-critical areas.

We show that the challenge to attaining groundbreaking

speedups with FPGAs is algorithmic, and speedup does not

come as a direct consequence of merely using the new

hardware. The “common wisdom” approach of using

traditional von Neumann algorithms and “porting” them or

“translating” them into an FPGA code is doomed to fail, as it

will likely waste precious opportunities to innovate and take

advantage of the non-von-Neumann approach offered by the

FPGA. It is thus, in the opinion of the authors, only through

strong algorithmic innovations and the invention of new

methods enabled only by the reconfigurable computing

paradigm, that truly revolutionary speedups will be obtained.

The techniques developed and implemented in this work, have

rendered, to the authors’ knowledge, the highest speedup in the

world (at the time of writing) for a single-FPGA linear

equation solver. This solver is currently functional and

operational in prototype form, and exhibits a 60x speedup over

high-end single-CPU systems when compared to LAPACK.

This paper is organized as follows: Section II explains the

disadvantages of the von Neumann architecture, Section III

explains the atomic LU factorization algorithm, Section IV

presents the idea of algorithm-aware adaptive precision

(AAAP), critical for attaining the levels of performance of the

algorithm, Section V shows the advantages of using arithmetic

acceleration at the bit-level (Turbo-LU), Section VI addresses

the issues of portability, ease of use, and algorithmic speed

balance, Section VII presents a description of the implemented

prototype, Section VIII shows several benchmarks and

performance results, and finally, Section IX presents the

conclusions of the work.

II. THE VON NEUMANN ARCHITECTURE BOTTLENECK

The use of von Neumann architecture-based CPUs for the

implementation of numerical linear algebra implies than even

the algorithms most suitable for parallelization are executed

sequentially. For illustration purposes, let us examine the case

of an inner product calculation. In the von Neumann

architecture a single hardware multiplier is used to perform the

required products, one element at a time. The introduction of

the Harvard architecture relieves the problem by allowing the

two vectors to reside in different memory spaces, but the

multiplier is still a single one. Furthermore, memory caching

allows the CPU a faster access to a local memory bank, but no

enhancements are introduced as of the number of multipliers in

the CPU Core or the sequential read/write operations from

memory. Considering that matrix computations reach an

optimum processing throughput by the use of as many

multipliers as elements in the vectors, researchers have

investigated multiprocessor networks as well as

multicore/manycore architectures, only to find the von

Neumann bottleneck replicated at every machine or core, plus

a new breed of problems related to the distribution of the

workload among multiple processing units.

Another approach in increasing the processing throughput of

von Neumann-based processors is to increase the clock speed.

This approach is limited, however, by increased power

dissipation.

The solution to this bottleneck is facilitated by

reconfigurable hardware architectures suited for each

particular problem. FPGAs offer a departing point for the

implementation of cost and power effective parallel

computing.

III. THE ATOMIC LU FACTORIZATION ALGORITHM

The first and most essential innovation enabling the

speedups obtained with this work is the “atomic LU”

factorization algorithm. This algorithm can be seen as a

sequence of N mega-instructions, each mega-instruction

compounded of many (hundreds or even thousands of) atomic

arithmetic operations working all at once in a massively

parallel network. The approach departs significantly from what

is typically done in von-Neumann algorithm design, and is

extremely powerful.

Let’s begin the discussion with a brief introduction to LU

factorization as used in this project:

A. Background

LU factorization is a procedure for decomposing an NxN

matrix A into a product of a lower triangular matrix L and an

upper triangular matrix U, A = LU. When solving the matrix

equation Ax = b, the LU factorization enables the formulation

of the equation as:

 (1)

The x vector solution can be found by first solving the

auxiliary system Lz = b for z using the so-called forward

substitution:

 (2)

and

(3)

for i = 2, …, N. The next step is to solve Ux = z for x using

the so-called backward substitution:

(4)

and

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

3

(5)

for i = N-1, …, 1. The methodology described above

assumes that all the elements in the diagonal of L are 1,

allowing a combined representation of L and U in a single

matrix.

A procedure to calculate the LU factorization in N stages is

described by the iterative application of the equations:

(6)

and

(7)

where aij are the components of the intermediate matrix A,

such that aij(k) represents the component ij of the matrix A at

the step k, 0≤k≤N.

B. The “Atomic LU” algorithm in reconfigurable

computing

The key concept behind the proposed algorithm is the use of

a “mega-instruction”, specifically built into the system

architecture to exploit the super-modular structure of the LU

equations expressed in the equations above. This mega-

instruction is made of many (hundreds or even thousands)

single arithmetic operators appropriately connected to render

the exact mathematical expression of the equations above at

each iteration step k.

Massive parallelism is enabled by the concurrent operation

of all of these arithmetic operators. The operators are

conceived as basic arithmetic processing units at the

component level, called atoms, hence the name “Atomic LU.”

The main atom in the architecture is called the “MA atom,”

where “MA” stands for “Multiply and Add.”

A functional block diagram of this atom is depicted in

Figure 1, and the complete mega-instruction, consisting of a

massive interconnection of atoms is shown in Figure 2. Note

that in this architecture, the atoms at the leftmost side are

different from the one shown in Figure 1. Those atoms

perform the normalization of the main diagonal of the L

matrix, and prepare the delivery of the L matrix.

Figure 1. MA Atom

Figure 2. Accelogic’s atomic LU architecture

In this architecture, the matrix is fed to the mega-instruction

from the bottom (semi-row by semi-row) and the right-hand

side (semi-column by semi-column), resulting in a diagonal

data flow as shown in Figure 3. After b (half of the matrix

bandwidth) clock cycles, the matrix is organized in the array

and the calculations can begin. In the next clock cycle, (b+1),

the first column of the L and first row of U are calculated at

once by the atomic array (or mega-instruction), and can be

read as an output from the left and top parts of it. Then, the

data is moved upwards and leftwards producing the second

column of L and the second row of U. The algorithm continues

this way until the last column of L and the last row of U are

found. It can be seen that the algorithm requires a total of

(b+N) clock cycles to compute the factorization.

The architectures proposed for the forward and backward

substitutions are shown in Figure 4 and Figure 5 respectively.

The advantage of these architectures is that they can be easily

integrated into the core LU core, providing the solution of the

linear system only N cycles after the LU factorization is done.

The combined LU factorization and solution of the matrix

equation Ax = b is shown in Figure 6.

Figure 3. Data flow in the atomic LU architecture

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

4

Figure 4. Forward substitution

Figure 5. Backward substitution

Figure 6. Atomic architecture for the solution of linear

equations using LU factorization

IV. ALGORITHM-AWARE ADAPTIVE PRECISION (AAAP)

In the atomic architecture, hundreds, or even thousands of

floating-point operations are executed during each clock cycle

of the FPGA. At a lower level of the design, those operations

are executed as bit operations, defined by the

architecture/algorithm design. The bit-level implementation of

these floating-point operations plays a key role in the

execution speed of the overall system.

In general, from a speed perspective, it is desirable for every

floating-point operation to use as few bits as the accuracy

requirements of the algorithm allow it. Reducing the number

of bits is of primary importance for FPGA algorithms because

it has a twofold effect in speed: (1) the reduction simplifies the

logic required to complete the arithmetic operations, thus

making them faster and able to run at higher clock frequencies

(often significantly faster); and (2) by making the operators

simpler, each operator will occupy significantly less area in the

FPGA, thus freeing FPGA area to allow more parallel

processing units – this enables higher parallelism, which

results in even higher algorithmic speeds.

Figure 7 and Figure 8 show the effects of arithmetic bit

reduction on FPGA area and on FPGA clock speed of the

implemented atomic LU algorithm. In this example, reducing

the number of bits from 20 to 12, produces a reduction of area

better than 3 times, and enables an increase in clock frequency

from 41 MHz to 48 MHz. The area reduction enables an

additional speedup of 3×, while the clock frequency increase

enables an additional speedup of 1.2x. Thus, the overall net

effect of reducing the number of bits from 20 to 12 is an

additional speedup of 3.6×. Note this speedup comes free and

on top of any other architectural or algorithmic speedups in the

system.

 Num ber of LUTs vs. Number of bits

0

5000

10000

15000

20000

25000

30000

35000

40000

12 14 16 18 20

Number of bits

N
u

m
b

e
r

o
f

L
U

T
s

Figure 7. Number of Look up tables (LUT, proportional to the

area of the FPGA occupied by the algorithm) as a function of

the number of bits used in the floating-point arithmetic.

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

5

 Maximum clock frequency vs. Number of bits

39

40

41

42

43

44

45

46

47

48

49

12 14 16 18 20

Number of bits

M
a
x
im

u
m

 c
lo

c
k
 f

re
q

u
e
n

c
y

Figure 8. Maximum clock frequency of the atomic

architecture as a function of the number of bits in the floating-

point arithmetic.

The number of bits required to obtain a given accuracy in

linear equation problems, is directly related to the condition

number of the matrix A. A rule of thumb is l ≈ log2(κ), where κ

is the condition number of A, and l is the number of bits of the

floating point arithmetic. The use of more than l bits does not

increase the accuracy of the algorithm.

Given the limitations of von Neumann architectures, only

32- and 64-bit floating-point arithmetic operations are possible

in commercial CPU systems.
1
 Therefore, the majority of

software applications simply use 64 bits for all of their

operations, even if such precision is not required (64 bits is

usually overkill for most practical problems, and a tremendous

waste of computing resources). Reconfigurable computing

allows the use of variable precision arithmetic targeted to the

application at hand. The atomic LU algorithm implemented in

the current prototype is parameterized to allow the easy

exploitation of variable precision arithmetic to squeeze speed

out of the system.

The key idea of Algorithm-Aware Adaptive Precision

(AAAP) is to use different bit-widths for different operations

inside the algorithm. There is no reason why the algorithm

would need all of its operations to have the same precision.

The local precision of arithmetic operations, although

correlated with the algorithm’s accuracy, is not the same as the

global accuracy of the result.

For the atomic LU algorithm, the authors were able to

implement AAAP in such a way that most of the floating-point

operations (more than 99%) are performed with a precision of

only 12 bits, while only a few of them are performed with 64

bit precision (less than 1%). In spite of this precision

reduction, the algorithm still presents an end-to-end accuracy

of 64-bit arithmetic. This reduction in the number of bits has a

tremendous speedup effect on the algorithm, because of the

1 Single (32 bits) and double (64 bits) floating point precisions are

intrinsically defined in commercial CPUs. Arbitrary precisions can be

obtained with specialized libraries, at the cost of much higher computation

times.

reasons discussed above
2
. This result is achieved by mixing the

plain atomic LU factorization done in the FPGA with an

iterative “precision enhancement” technique called “iterative

refinement” implemented on the CPU side of the system.

Iterative refinement is a technique of the 1960’s typically

used to correct pivoting errors in sparse systems or to achieve

higher than 64-bit accuracy in CPU systems. The algorithm is

summarized as [1]:

1. Solve Ax = b in lower precision, save the lower

precision L and U.

2. Compute in higher precision r = b – A*x .

3. Stop if residual r meets convergence conditions.

4. Solve triangular systems (L*U)z = r in lower

precision.

5. Update solution x+ = x + z using higher

precision.

6. Repeat from 2.

It can be demonstrated that, if the number of bits in the low

precision arithmetic is appropriate, the number of iterations

required to achieve a high accuracy is very small, and the

whole iterative process typically accounts for less than 1% of

the total time to solution (combined low-precision and iterative

refinement algorithm).

The use of iterative refinement for FPGA algorithm speedup

is a key enabler of the proposed technology, and an excellent

illustration of what AAAP can achieve under the context of

this project. The results obtained show that there are several

ways of exploiting AAAP in the context of FPGA linear

algebra to implement more efficient algorithms.

V. ARITHMETIC ACCELERATION AT THE BIT-LEVEL (TURBO-

LU)

Arithmetic acceleration at the bit level is a powerful feature

of reconfigurable computing that can be exploited to speedup

algorithms significantly. It is neither trivial nor

straightforward, and requires significant innovation on the part

of the algorithm designer. Moreover, it is a feature not

available to the scientist working in the traditional von

Neumann paradigm.

In short words, arithmetic acceleration is about designing

the algorithm jointly at the macro level (the typical arithmetic

operations) and at the bit level (how those arithmetic

operations are implemented bit by bit, or logic gate by logic

gate). One approach to understand arithmetic acceleration is

figuring that, instead of using basic arithmetic operators, the

designer implements “mega-operators” that glue the most

critical operations of the algorithm, in a way that together they

consume less FPGA area and can run at a faster clock speed.

The overall effect is to free extra FPGA area for increased and

2 The authors estimate that the core LU algorithm works at 2x speedup,

AAAP incorporates an additional 6x, and the arithmetic accelerations

explained in the next Subsection account for an additional 5x – the combined

effect is multiplicative, hence explaining the resulting 60x.

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

6

more massive parallelism, accompanied by a faster clock

speed, resulting in an increased speedup similar to the way it is

obtained through the use of AAAP.

 Bit-level optimizations should always be considered in order

to maximize speed performance. Consider for example the

addition of two integers. The process is described in Figure 9

and it starts with the binary addition of the Least Significant

Bit (LSB) of both numbers. When the first binary addition is

completed (after time), the LSB bit of the answer is ready

and can be used in other arithmetic operations of the parent

algorithm if necessary. Also, after time , the carry of the first

binary addition triggers the addition of the next pair of bits.

This process continues until the Most Significant Bits (MSB)

of the two integers are added. The time required to compute

the complete integer addition is n (being n the number of

bits), i.e., this time is proportional to the number of bits of the

underlying arithmetic. Now consider the addition of three

numbers. The operation is shown in Figure 10, and it begins

with the addition of the two LSBs of the first two integers.

When the first binary addition is ready, the carry triggers the

addition of the next pair of bits (first two integers), but since

the LSB of the first addition is ready, this LSB can be added

(concurrently) with the LSB of the third integer. The result is

that the total time required for the addition of the three integers

is only increased by , i.e., the total time is (n+1)which is

just a fraction of the time it takes to compute the addition of

two integers. In other words, with the architecture presented, if

adding two integers takes time T, then adding three integers

takes only (1 + 1/n) T –a somewhat counterintuitive result,

but very beneficial in terms of computational acceleration. In a

traditional CPU core, on the contrary, the addition of three

integers would typically take (if you do it carefully) at least

double the time that the addition of two integers would take.

Figure 9. Overview of an implementation of bit-level

operations for the addition of two integers. The computing

time is proportional to the number of bits n.

Figure 10. Overview of an implementation of bit-level

operations for the addition of three integers. The computation

time is proportional to approximately the number of bits n.

Good algorithm implementations will have concurrency

levels on the order of thousands of basic blocks operating

concurrently per clock cycle, and clock speeds on the order of

1 MHz to 500 MHz for the reconfigurable computing

platforms available at the time of writing, depending on the

particular application. Note that even though the clock speed is

significantly lower than that of the fastest CPU, the level of

concurrency coupled with the gains provided by coarse-

grained and algorithm-level parallelism enables solutions that

are thousands of times faster than what the best CPU can do.

Note that, at least in principle, data can be made available to

the reconfigurable computing modules massively via wiring,

thus reducing the need for storage in memory. This, in addition

to the fact that many processing units can operate concurrently

without the need for instruction fetch cycles, makes fine-

grained parallelism the key ingredient responsible for getting

rid of the von Neumann bottleneck in FPGA computing.

For the atomic LU algorithm, the critical operation is that of

the so-called “critical path” of the architecture, which is

depicted in Figure 11. The careful reader should be able to

identify these operations directly from the atomic architecture

depicted earlier in Figure 2.

Figure 11. Architecture of the most critical operations in the

atomic LU algorithm, known as the “critical path” of the

system. Any acceleration implemented in this mega-operator

will translate into a speedup of the overall algorithm.

The prototype contains a very aggressive arithmetic-

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

7

accelerated mega-operator for this critical path, by making use

of logarithmic arithmetic (instead of the traditional floating-

point operators). This mega-operator, which is termed Turbo-

LU, rendered a 5× speedup while providing the same levels of

accuracy as if traditional floating-point arithmetic had been

used.

VI. PORTABILITY, EASE OF USE, AND ALGORITHMIC SPEED

BALANCE

The four mission-critical areas identified at the core of this

work as key to groundbreaking and commercially-successful

FPGA computing solutions are: portability, ease of use,

algorithmic speed balance, and communication speed.

Aspects of the design from the perspective of the mission-

critical areas are discussed in the following sections. Before

proceeding, it is important to emphasize that both portability

and ease of use have been a key requirement during the

conception and development of this technology. The use of the

system, as it stands today, does not require for the user to

know neither VHDL nor FPGA technology. It is possible for a

user to exploit the groundbreaking speedups of this technology

by simply calling the prototype libraries from a language like

C or Fortran, using a traditional development environment in a

CPU.

To approach the mission-critical areas using a systematic

methodology, the design of the solver is completely modular,

in such a way that each component can be seen as an

independently entity. Two different devices are part of the

solver: a host PC and a reconfigurable computing platform.

Figure 12 is a block diagram of the solver, when it is

connected to a host PC.

Figure 12. Block diagram of Accelogic LU-based solver as

implemented in the current prototype.

VII. DESCRIPTION OF PROTOTYPE

A. Linear equation solver in the host PC

The host PC is the device that runs the high-level

applications that the final user manipulates. In order to

guarantee full compatibility of the linear equation solver, a

C++ library that interfaces the reconfigurable computing

platform with traditional programming languages was

developed. The library, which includes a wrapper that mimics

the input and output parameters of the LAPACK function

DGBTRS (which solves a system of linear equations using

matrix factorization), can be easily called from virtually any

high-level programming language, thus guaranteeing both

portability and ease of use. The library includes only two

internal functions that depend on the communication interface:

“TransmitData” (reads problem data directly from memory

and sends it to the solver platform) and “ReceiveData”

(receives the result from the solver platform and writes it

directly into the host PC memory). Current implementations of

“TransmitData” and “ReceiveData” execute on a variety of

communication channels, including very fast PCIe

communication. This layout is of primary importance for the

system to achieve hardware and interconnect portability.

B. Linear equation prototype solver in the reconfigurable

computing platform

The linear equation solver that runs in the reconfigurable

computing platform (a ML402 FPGA board from Xilinx
3
) is

built up from four modules: Communications Block, Core

Feeder, LU Core, and Core Solution Render. All the

components are implemented using standard VHDL functions,

in order to guarantee porting of the source code to a wide

number of FPGA systems. Particular definitions that depend

on the FPGA system that supports the solver are condensed in

a parametric way in a definition package that is part of the

source code.

The four blocks communicate through high-speed buses,

using a specific protocol and control system that makes the

internal definition and design of each of the modules

independent from the others. This is especially important in

the case of the Communication Block, since different

implementations of this module are required depending on the

communication interface between the reconfigurable

computing platform and the host PC.

Another internal component of key importance is the

interface to memory devices. There are different types of

memory whose access protocol can change depending on

factors like the reconfigurable computing device, host PC,

technology, etc. Given the wide variety of memory devices, it

is important to make the FPGA solver independent from the

memory interface, so to guarantee portability. The current

prototype implements memory portability wrappers, called

“stacks.” A stack in the solver is a parameterizable minimal

unit of memory, for which its internal implementation can be

modified according to the particular memory device that is

being used. Every component of the solver that requires the

3 A second implementation exists in a very-high-performance hardware

system procured from Dini Group, with exactly the same architecture.

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

8

use of memory accesses it through the stacks (instead of

directly), making the migration between memory architectures

completely transparent to the algorithm. This form of building

the design is key for the system to achieve full reconfigurable-

computing hardware portability.

Figure 13 shows a block diagram of the LU Core, the

computational unit that implements the atomic LU

architecture/algorithm combined with the solver of linear

equations, as described in the subsection “Atomic LU

algorithm in reconfigurable computing”. Figure 14 and Figure

15 show the block diagram of Core Feeder and the Core

Solution Render, auxiliary modules that provide data to the LU

Core, and process the solution delivered from the LU Core to

be sent to the Communication Block.

Figure 13. Block diagram of the LU Core

architecture/algorithm that runs in the FPGA

Figure 14. Block diagram of the Core Feeder

Figure 15. Block diagram of the Core Solution Render

VIII. RESULTS

As a result of this work, a working prototype of an FPGA

band linear equation solver was designed and implemented.

The prototype was developed using a combination of VHDL

and C++ programming languages. VHDL was used for the

description of the algorithm in reconfigurable computing,

while C++ was used to create the user interface, in such a way

that final users only require including a standard C++ library

call to integrate the solver in their applications. No knowledge

of VHDL or reconfigurable computing is required from end-

users of this technology.

Using this C++ library, a demo in MATLAB® was

implemented, which runs a benchmark environment comparing

the performance of the implemented FPGA algorithms against

LAPACK’s solver functions DGBTRF and DGBTRS, which

are the standard functions for solving banded systems of linear

equations via LU factorization. The prototype was synthesized

in the ML402 commercial off-the-shelf FPGA board

distributed by Xilinx, as well as in the high-performance

Virtex 6 system of Dini Group. The prototype, as it stands

today, is portable to any Virtex-type FPGA board, and can be

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

9

plugged using a variety of communication interfaces to any PC

running Windows.

The prototype demonstrated a speedup of 60x when

compared against the world’s most widely used software for

linear equations (LAPACK) running on the Intel Woodcrest

CPU. Additional benchmarks are being performed against

other CPUs, and using other base FPGA platforms, and will be

reported elsewhere. This level of performance is, to the

authors’ knowledge, the fastest at the time of writing. Figure

18 shows a contour plot of the experimental speedup

measurements obtained as a function of both matrix size and

matrix bandwidth . The plot on the left shows the speedups

obtained using the Xilinx XCV4SX35 prototype board. The

plot on the right shows the speedup obtained with the Xilinx

XCV5LX220. Both plots were obtained comparing against the

Intel Xeon Woodcrest (single core). The “area constraint”

dashed line indicates the maximum bandwidth that can be

supported by the use of a fully parallel solution with the

hardware system. Larger matrix bands require either the use of

a multi-FPGA board or a different FPGA algorithm.

A. A remark on the interpretation and usability of the 60x

speedup

The results in Figure 16 compare raw processing power in

the reconfigurable computing unit without considering the

effects of the delay in the bilateral communications that must

take place between the CPU and the FPGA. A real practical

system should consider not only the FPGA computing speed,

but also the communication speed, when assessing the

performance of an FPGA algorithm. Suppose an FPGA system

with a speedup factor of 1,000×. If the communication channel

connecting the FPGA and the host CPU is extremely slow,

then the time it would take to transmit the problem data and/or

the solution would be longer than the time it would take the

CPU to solve the problem by itself, thus making the effective

speedup vanish entirely. The FPGA would be useless.

Figure 16. Contour plots of the speedup of the FPGA linear

equation solver, as a function of the size of the matrix (N) and

the matrix bandwidth (i.e., the number of diagonals that cover

all the data in the sparse matrix). For each plot, the thin bar on

the right-hand side indicates the mapping associated with the

color scale (in general, hot colors like red indicate larger

speedup factors).

The communication process plays a key role on the

performance of a networked product, and its effect should not

be underestimated.

In order to illustrate the effect of the communications

channel, Figure 17 shows an estimate of the overall speedups

that are achievable when both computation and communication

speeds are jointly considered. Note that, when the

communication speed is zero, the overall speedup is always

zero, whereas when the communication speed is infinite, the

overall speedup is equal to 60×, the FPGA computation

speedup. The larger the communication speed, the larger the

effective speedup. The green vertical lines show typical

speedups that are achievable with current (and inexpensive)

commercial communication interfaces. PCI Express, for

example, renders an effective speedup larger than 45x for the

current prototype.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

Estimated speedup of LU core considering communication delay

Transfer speed (in Gbps)

S
p

e
e

d
u
p

133MHz PCI-X

PCI Express (x16)

HyperTransport

Figure 17. Effect of the communication speed on the

performance of the solver when the matrix bandwidth is 30

and N is large. The speed and corresponding speedup of three

(currently commercially available) interfaces is shown: PCI-X,

PCI Express, and HyperTransport. This plot considers neither

data compression nor streaming techniques that will be

introduced in this project later. The use of efficient data

compression methods and streaming may increase the final

speedup.

IX. CONCLUSION

The work demonstrates that a change in the mainstream

FPGA programming paradigm is required in order to achieve

accelerations of orders of magnitude ahead of implementations

over von Neumann computer architectures. Several key

innovations at the algorithm level are presented, such as the

atomic LU factorization, algorithm-aware adaptive precision,

and algorithm optimization at the bit level. Several important

commercialization enablers are also presented, such as

portability, ease of use, and algorithmic speed balance. The

concurrent use of these algorithmic strategies and

TECHNICAL REPORT #10-0048 ACCELOGIC, LLC

DELIVERED TO NASA AMES RESEARCH CENTER

THIS WORK IS SUBJECT MATTER OF U.S. PATENT #7,849,126

WORK PERFORMED UNDER NASA CONTRACTS NNX07CA19P AND NNX10RA04C

10

commercialization enablers, breaks with the tradition of

porting a computing algorithm to faster CPUs, and produces

an acceleration of 60× for the LU factorization problem, even

when available FPGA clock speeds are today much slower that

those found in a high-end CPU.

A wide range of applications in high performance

computing is envisioned for this technology, encompassing

industries as varied as aerospace and automotive vehicle

design, oil & gas exploration, circuit simulation,

biomechanics, medical image processing, geophysics, ad-hoc

networking models, econometric models, linear programming,

and many more. This wide collection of applications

demonstrates the importance of maturing this area of

knowledge and making the results promptly available to

industry in the form of reliable commercial solvers.

ACKNOWLEDGMENT

We wish to thank the NASA benchmarking personnel for

their collaboration with NPB benchmark reports, as well as

Gene H. Golub (R.I.P) from Stanford University, and Jack

Dongarra from the University of Tennessee, for their

consultation on this project. This material is based upon work

supported by NASA, under contract numbers NNX07CA19P

and NNX10RA04C. Neither the U.S. Government nor any

agency thereof, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the U.S.

Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

REFERENCES

[1] Golub and C.F. Van Loan. Matrix Computations, Johns Hopkins

University Press; 3 ed, 1996.

[2] P. Rajesh Kumar, K. Sridharan, S. Srinivasan. “A parallel algorithm,

architecture and FPGA realization for landmark determination and

map construction in a planar unknown environment”. In: Parallel

Computing 32 (2006) 205–221

[3] J. Gonzalez, A. Upegui, R. C. Nunez, D. Orozco. “High Performance

Non- von Neumann Algorithms for Large-Scale Optimization”.

Presentation at the 31st AIAA Dayton-Cincinnati Aerospace Sciences

Symposium. Dayton, Ohio. 07 March 2006

[4] Accelogic LLC. Algorithm Design in the Era of Reconfigurable

Computing – Course Notes. Accelogic Training Series on HPC with

Reconfigurable Computing. 2006 – 2007.

[5] J. J. Dongarra. “Performance of Various Computers Using Standard

Linear Equations Software”, (Linpack Benchmark Report), University

of Tennessee Computer Science Technical Report, CS-89-85, 2006.

[6] Xilinx. Virtex-5 Family Overview LX, LXT, and SXT Platforms.

Available online at:

http://direct.xilinx.com/bvdocs/publications/ds100.pdf. May 2007

[7] D. Veley, J. Gonzalez, R. Nunez. “Reconfigurable Computing in

Engineering Mechanics” presented in the: 18th Engineering Mechanics

Division Conference (EMD2007), 2007

