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Abstract— The developments seen in the field of reconfigurable 

computing during the last ten years bring an unprecedented 

opportunity for the acceleration of supercomputing applications 

in computational fluid dynamics (CFD). Reconfigurable 

computing algorithms implemented in Field-Programmable Gate 

Arrays (FPGAs) have proven to be orders of magnitude faster 

than traditional CPU-based solutions. 

It is estimated that over seventy percent of supercomputer 

CPU cycles worldwide are spent solving large-scale linear algebra 

problems. Accelogic is developing unique algorithmic innovations 

that will enable a single FPGA chip to surpass the performance of 

a CPU cluster for solving large-scale linear systems. This 

technology has the potential to reduce both cost and power 

consumption by one to two orders of magnitude, while 

maintaining code portability and ease of use for FORTRAN and 

C environments. 

We show our recent results in this direction, including insights 

on why and how things can go wrong when designing FPGA 

supercomputing kernels, and why the common-wisdom approach 

of “porting” or “translating” the algorithms into the FPGA has 

not delivered the promised levels of performance for CFD. We 

discuss the critical factors of success behind Accelogic’s latest 

60x-speedup narrowband linear solver – the fastest FPGA linear 

solver at the time of writing. 

 
Index Terms— Linear algebra, Algorithms, Field 

programmable gate array, FPGA, Matrix decomposition, Digital 

arithmetic, LU, Band solver.  
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I. INTRODUCTION 

ECONFIGURABLE computing with FPGAs has emerged 

within the last years as a viable alternative for very low-

cost high-performance supercomputing. Speedups over 

traditional single-CPU systems on the orders of hundreds, and 

even thousands, have been demonstrated for specific domain 

applications during the last years.  

The fields of partial differential equations and numerical 

linear algebra, perhaps the most important ones in high-

performance computing, have not escaped to acceleration 

attempts made by FPGA programmers and developers. 

However, results in this direction have not been very 

successful so far. Researchers have been able to demonstrate 

single-digit speedups at most, and many of the proposed 

solutions lack both portability and ease of use. 

This paper reports the results from Accelogic’s 

reconfigurable computing research program on numerical 

linear algebra, which aims at conceptualizing and developing 

the world’s fastest FPGA-based solver for large-scale linear 

equations, a single-FPGA system with performance 

comparable to that of ScaLAPACK running on a 4,096-CPU 

supercomputer. Besides the direct breakthroughs in terms of 

speed performance enabled when using and scaling this 

technology, this type of solver can also bring a one to two 

order-of-magnitude reduction in both cost and power 

consumption, while maintaining code portability and ease of 

use for Fortran and C environments via simple and easy-to-use 

APIs. 

A working demonstration of the reach and impact of 

Accelogic’s approach is presented through a proof-of-concept 

prototype that exhibits a 60x performance speedup when 

compared to LAPACK running on the fastest CPU available at 

the time of writing. The high performance of this prototype 

successfully shows the feasibility of the architectural design 

and the algorithmic innovations proposed by Accelogic to 

reach a 4,096-node performance target. 

The key to the technical and commercial success of this 

work lies on four mission-critical areas, two of them 

algorithmic (algorithmic speed balance, and communication 

speed) and two of them related to the industrial quality of the 
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product (portability, and ease of use). The entirety of the work 

gravitates around these four mission-critical areas. 

We show that the challenge to attaining groundbreaking 

speedups with FPGAs is algorithmic, and speedup does not 

come as a direct consequence of merely using the new 

hardware. The “common wisdom” approach of using 

traditional von Neumann algorithms and “porting” them or 

“translating” them into an FPGA code is doomed to fail, as it 

will likely waste precious opportunities to innovate and take 

advantage of the non-von-Neumann approach offered by the 

FPGA. It is thus, in the opinion of the authors, only through 

strong algorithmic innovations and the invention of new 

methods enabled only by the reconfigurable computing 

paradigm, that truly revolutionary speedups will be obtained. 

The techniques developed and implemented in this work, have 

rendered, to the authors’ knowledge, the highest speedup in the 

world (at the time of writing) for a single-FPGA linear 

equation solver. This solver is currently functional and 

operational in prototype form, and exhibits a 60x speedup over 

high-end single-CPU systems when compared to LAPACK.  

This paper is organized as follows: Section II explains the 

disadvantages of the von Neumann architecture, Section III 

explains the atomic LU factorization algorithm, Section IV 

presents the idea of algorithm-aware adaptive precision 

(AAAP), critical for attaining the levels of performance of the 

algorithm, Section V shows the advantages of using arithmetic 

acceleration at the bit-level (Turbo-LU), Section VI addresses 

the issues of portability, ease of use, and algorithmic speed 

balance, Section VII presents a description of the implemented 

prototype, Section VIII shows several benchmarks and 

performance results, and finally, Section IX presents the 

conclusions of the work. 

 

II. THE VON NEUMANN ARCHITECTURE BOTTLENECK 

The use of von Neumann architecture-based CPUs for the 

implementation of numerical linear algebra implies than even 

the algorithms most suitable for parallelization are executed 

sequentially. For illustration purposes, let us examine the case 

of an inner product calculation. In the von Neumann 

architecture a single hardware multiplier is used to perform the 

required products, one element at a time. The introduction of 

the Harvard architecture relieves the problem by allowing the 

two vectors to reside in different memory spaces, but the 

multiplier is still a single one. Furthermore, memory caching 

allows the CPU a faster access to a local memory bank, but no 

enhancements are introduced as of the number of multipliers in 

the CPU Core or the sequential read/write operations from 

memory. Considering that matrix computations reach an 

optimum processing throughput by the use of as many 

multipliers as elements in the vectors, researchers have 

investigated multiprocessor networks as well as 

multicore/manycore architectures, only to find the von 

Neumann bottleneck replicated at every machine or core, plus 

a new breed of problems related to the distribution of the 

workload among multiple processing units. 

Another approach in increasing the processing throughput of 

von Neumann-based processors is to increase the clock speed. 

This approach is limited, however, by increased power 

dissipation.   

The solution to this bottleneck is facilitated by 

reconfigurable hardware architectures suited for each 

particular problem. FPGAs offer a departing point for the 

implementation of cost and power effective parallel 

computing. 

 

III. THE ATOMIC LU FACTORIZATION ALGORITHM 

The first and most essential innovation enabling the 

speedups obtained with this work is the “atomic LU” 

factorization algorithm. This algorithm can be seen as a 

sequence of N mega-instructions, each mega-instruction 

compounded of many (hundreds or even thousands of) atomic 

arithmetic operations working all at once in a massively 

parallel network. The approach departs significantly from what 

is typically done in von-Neumann algorithm design, and is 

extremely powerful.  

Let’s begin the discussion with a brief introduction to LU 

factorization as used in this project: 

A. Background 

LU factorization is a procedure for decomposing an NxN 

matrix A into a product of a lower triangular matrix L and an 

upper triangular matrix U, A = LU. When solving the matrix 

equation Ax = b, the LU factorization enables the formulation 

of the equation as: 

 

 (1) 

 

The x vector solution can be found by first solving the 

auxiliary system Lz = b for z using the so-called forward 

substitution: 

 

 (2) 

and 

 

(3) 

 

for i = 2, …, N. The next step is to solve Ux = z for x using 

the so-called backward substitution: 

 

 

(4) 

and 
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(5) 

 

for i = N-1, …, 1. The methodology described above 

assumes that all the elements in the diagonal of L are 1, 

allowing a combined representation of L and U in a single 

matrix. 

A procedure to calculate the LU factorization in N stages is 

described by the iterative application of the equations: 

 

(6) 

and 

 

(7) 

where aij are the components of the intermediate matrix A, 

such that aij(k) represents the component ij of the matrix A at 

the step k, 0≤k≤N. 

 

B. The “Atomic LU” algorithm in reconfigurable 

computing 

The key concept behind the proposed algorithm is the use of 

a “mega-instruction”, specifically built into the system 

architecture to exploit the super-modular structure of the LU 

equations expressed in the equations above. This mega-

instruction is made of many (hundreds or even thousands) 

single arithmetic operators appropriately connected to render 

the exact mathematical expression of the equations above at 

each iteration step k.  

Massive parallelism is enabled by the concurrent operation 

of all of these arithmetic operators. The operators are 

conceived as basic arithmetic processing units at the 

component level, called atoms, hence the name “Atomic LU.” 

The main atom in the architecture is called the “MA atom,” 

where “MA” stands for “Multiply and Add.”  

A functional block diagram of this atom is depicted in 

Figure 1, and the complete mega-instruction, consisting of a 

massive interconnection of atoms is shown in Figure 2. Note 

that in this architecture, the atoms at the leftmost side are 

different from the one shown in Figure 1. Those atoms 

perform the normalization of the main diagonal of the L 

matrix, and prepare the delivery of the L matrix.  

 

 

Figure 1. MA Atom 

 

 
Figure 2. Accelogic’s atomic LU architecture 

 

In this architecture, the matrix is fed to the mega-instruction 

from the bottom (semi-row by semi-row) and the right-hand 

side (semi-column by semi-column), resulting in a diagonal 

data flow as shown in Figure 3. After b (half of the matrix 

bandwidth) clock cycles, the matrix is organized in the array 

and the calculations can begin. In the next clock cycle, (b+1), 

the first column of the L and first row of U are calculated at 

once by the atomic array (or mega-instruction), and can be 

read as an output from the left and top parts of it. Then, the 

data is moved upwards and leftwards producing the second 

column of L and the second row of U. The algorithm continues 

this way until the last column of L and the last row of U are 

found. It can be seen that the algorithm requires a total of 

(b+N) clock cycles to compute the factorization. 

The architectures proposed for the forward and backward 

substitutions are shown in Figure 4 and Figure 5 respectively. 

The advantage of these architectures is that they can be easily 

integrated into the core LU core, providing the solution of the 

linear system only N cycles after the LU factorization is done. 

The combined LU factorization and solution of the matrix 

equation Ax = b is shown in Figure 6.  

 

 

Figure 3. Data flow in the atomic LU architecture 
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Figure 4. Forward substitution 

 

 

 

 

 

 

Figure 5. Backward substitution 

 

 

Figure 6. Atomic architecture for the solution of linear 

equations using LU factorization 

 

IV. ALGORITHM-AWARE ADAPTIVE PRECISION (AAAP) 

In the atomic architecture, hundreds, or even thousands of 

floating-point operations are executed during each clock cycle 

of the FPGA. At a lower level of the design, those operations 

are executed as bit operations, defined by the 

architecture/algorithm design. The bit-level implementation of 

these floating-point operations plays a key role in the 

execution speed of the overall system.  

In general, from a speed perspective, it is desirable for every 

floating-point operation to use as few bits as the accuracy 

requirements of the algorithm allow it. Reducing the number 

of bits is of primary importance for FPGA algorithms because 

it has a twofold effect in speed: (1) the reduction simplifies the 

logic required to complete the arithmetic operations, thus 

making them faster and able to run at higher clock frequencies 

(often significantly faster); and (2) by making the operators 

simpler, each operator will occupy significantly less area in the 

FPGA, thus freeing FPGA area to allow more parallel 

processing units – this enables higher parallelism, which 

results in even higher algorithmic speeds. 

Figure 7 and Figure 8 show the effects of arithmetic bit 

reduction on FPGA area and on FPGA clock speed of the 

implemented atomic LU algorithm. In this example, reducing 

the number of bits from 20 to 12, produces a reduction of area 

better than 3 times, and enables an increase in clock frequency 

from 41 MHz to 48 MHz. The area reduction enables an 

additional speedup of 3×, while the clock frequency increase 

enables an additional speedup of 1.2x. Thus, the overall net 

effect of reducing the number of bits from 20 to 12 is an 

additional speedup of 3.6×. Note this speedup comes free and 

on top of any other architectural or algorithmic speedups in the 

system. 
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Figure 7. Number of Look up tables (LUT, proportional to the 

area of the FPGA occupied by the algorithm) as a function of 

the number of bits used in the floating-point arithmetic.  
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 Maximum clock frequency vs. Number of bits
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Figure 8. Maximum clock frequency of the atomic 

architecture as a function of the number of bits in the floating-

point arithmetic. 

 

The number of bits required to obtain a given accuracy in 

linear equation problems, is directly related to the condition 

number of the matrix A. A rule of thumb is l ≈ log2(κ), where κ 

is the condition number of A, and l is the number of bits of the 

floating point arithmetic. The use of more than l bits does not 

increase the accuracy of the algorithm. 

Given the limitations of von Neumann architectures, only 

32- and 64-bit floating-point arithmetic operations are possible 

in commercial CPU systems.
1
 Therefore, the majority of 

software applications simply use 64 bits for all of their 

operations, even if such precision is not required (64 bits is 

usually overkill for most practical problems, and a tremendous 

waste of computing resources). Reconfigurable computing 

allows the use of variable precision arithmetic targeted to the 

application at hand. The atomic LU algorithm implemented in 

the current prototype is parameterized to allow the easy 

exploitation of variable precision arithmetic to squeeze speed 

out of the system. 

The key idea of Algorithm-Aware Adaptive Precision 

(AAAP) is to use different bit-widths for different operations 

inside the algorithm. There is no reason why the algorithm 

would need all of its operations to have the same precision. 

The local precision of arithmetic operations, although 

correlated with the algorithm’s accuracy, is not the same as the 

global accuracy of the result.  

For the atomic LU algorithm, the authors were able to 

implement AAAP in such a way that most of the floating-point 

operations (more than 99%) are performed with a precision of 

only 12 bits, while only a few of them are performed with 64 

bit precision (less than 1%). In spite of this precision 

reduction, the algorithm still presents an end-to-end accuracy 

of 64-bit arithmetic. This reduction in the number of bits has a 

tremendous speedup effect on the algorithm, because of the 

 
1 Single (32 bits) and double (64 bits) floating point precisions are 

intrinsically defined in commercial CPUs. Arbitrary precisions can be 

obtained with specialized libraries, at the cost of much higher computation 

times. 

reasons discussed above
2
. This result is achieved by mixing the 

plain atomic LU factorization done in the FPGA with an 

iterative “precision enhancement” technique called “iterative 

refinement” implemented on the CPU side of the system. 

Iterative refinement is a technique of the 1960’s typically 

used to correct pivoting errors in sparse systems or to achieve 

higher than 64-bit accuracy in CPU systems. The algorithm is 

summarized as [1]: 

 
1. Solve Ax = b in lower precision, save the lower 

precision L and U. 

2. Compute in higher precision r = b – A*x . 

3. Stop if residual r meets convergence conditions. 

4. Solve triangular systems (L*U)z = r in lower 

precision. 

5. Update solution   x+ = x + z   using higher 

precision. 

6. Repeat from 2. 

 

It can be demonstrated that, if the number of bits in the low 

precision arithmetic is appropriate, the number of iterations 

required to achieve a high accuracy is very small, and the 

whole iterative process typically accounts for less than 1% of 

the total time to solution (combined low-precision and iterative 

refinement algorithm). 

The use of iterative refinement for FPGA algorithm speedup 

is a key enabler of the proposed technology, and an excellent 

illustration of what AAAP can achieve under the context of 

this project. The results obtained show that there are several 

ways of exploiting AAAP in the context of FPGA linear 

algebra to implement more efficient algorithms. 

 

V. ARITHMETIC ACCELERATION AT THE BIT-LEVEL (TURBO-

LU) 

Arithmetic acceleration at the bit level is a powerful feature 

of reconfigurable computing that can be exploited to speedup 

algorithms significantly. It is neither trivial nor 

straightforward, and requires significant innovation on the part 

of the algorithm designer. Moreover, it is a feature not 

available to the scientist working in the traditional von 

Neumann paradigm.  

In short words, arithmetic acceleration is about designing 

the algorithm jointly at the macro level (the typical arithmetic 

operations) and at the bit level (how those arithmetic 

operations are implemented bit by bit, or logic gate by logic 

gate). One approach to understand arithmetic acceleration is 

figuring that, instead of using basic arithmetic operators, the 

designer implements “mega-operators” that glue the most 

critical operations of the algorithm, in a way that together they 

consume less FPGA area and can run at a faster clock speed. 

The overall effect is to free extra FPGA area for increased and 

 
2 The authors estimate that the core LU algorithm works at 2x speedup, 

AAAP incorporates an additional 6x, and the arithmetic accelerations 

explained in the next Subsection account for an additional 5x – the combined 

effect is multiplicative, hence explaining the resulting 60x. 
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more massive parallelism, accompanied by a faster clock 

speed, resulting in an increased speedup similar to the way it is 

obtained through the use of AAAP. 

   Bit-level optimizations should always be considered in order 

to maximize speed performance. Consider for example the 

addition of two integers. The process is described in Figure 9 

and it starts with the binary addition of the Least Significant 

Bit (LSB) of both numbers. When the first binary addition is 

completed (after time ), the LSB bit of the answer is ready 

and can be used in other arithmetic operations of the parent 

algorithm if necessary. Also, after time , the carry of the first 

binary addition triggers the addition of the next pair of bits. 

This process continues until the Most Significant Bits (MSB) 

of the two integers are added. The time required to compute 

the complete integer addition is n (being n the number of 

bits), i.e., this time is proportional to the number of bits of the 

underlying arithmetic. Now consider the addition of three 

numbers. The operation is shown in Figure 10, and it begins 

with the addition of the two LSBs of the first two integers. 

When the first binary addition is ready, the carry triggers the 

addition of the next pair of bits (first two integers), but since 

the LSB of the first addition is ready, this LSB can be added 

(concurrently) with the LSB of the third integer. The result is 

that the total time required for the addition of the three integers 

is only increased by , i.e., the total time is (n+1)which is 

just a fraction of the time it takes to compute the addition of 

two integers. In other words, with the architecture presented, if 

adding two integers takes time T, then adding three integers 

takes only  (1 + 1/n) T   –a somewhat counterintuitive result, 

but very beneficial in terms of computational acceleration. In a 

traditional CPU core, on the contrary, the addition of three 

integers would typically take (if you do it carefully) at least 

double the time that the addition of two integers would take. 

 

 
Figure 9. Overview of an implementation of bit-level 

operations for the addition of two integers. The computing 

time is proportional to the number of bits n. 

 

 
Figure 10. Overview of an implementation of bit-level 

operations for the addition of three integers. The computation 

time is proportional to approximately the number of bits n. 

 

Good algorithm implementations will have concurrency 

levels on the order of thousands of basic blocks operating 

concurrently per clock cycle, and clock speeds on the order of 

1 MHz to 500 MHz for the reconfigurable computing 

platforms available at the time of writing, depending on the 

particular application. Note that even though the clock speed is 

significantly lower than that of the fastest CPU, the level of 

concurrency coupled with the gains provided by coarse-

grained and algorithm-level parallelism enables solutions that 

are thousands of times faster than what the best CPU can do. 

Note that, at least in principle, data can be made available to 

the reconfigurable computing modules massively via wiring, 

thus reducing the need for storage in memory. This, in addition 

to the fact that many processing units can operate concurrently 

without the need for instruction fetch cycles, makes fine-

grained parallelism the key ingredient responsible for getting 

rid of the von Neumann bottleneck in FPGA computing. 

For the atomic LU algorithm, the critical operation is that of 

the so-called “critical path” of the architecture, which is 

depicted in Figure 11. The careful reader should be able to 

identify these operations directly from the atomic architecture 

depicted earlier in Figure 2. 

 

 

Figure 11. Architecture of the most critical operations in the 

atomic LU algorithm, known as the “critical path” of the 

system. Any acceleration implemented in this mega-operator 

will translate into a speedup of the overall algorithm. 

 

The prototype contains a very aggressive arithmetic-
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accelerated mega-operator for this critical path, by making use 

of logarithmic arithmetic (instead of the traditional floating-

point operators). This mega-operator, which is termed Turbo-

LU, rendered a 5× speedup while providing the same levels of 

accuracy as if traditional floating-point arithmetic had been 

used.  

 

VI. PORTABILITY, EASE OF USE, AND ALGORITHMIC SPEED 

BALANCE 

The four mission-critical areas identified at the core of this 

work as key to groundbreaking and commercially-successful 

FPGA computing solutions are: portability, ease of use, 

algorithmic speed balance, and communication speed.  

Aspects of the design from the perspective of the mission-

critical areas are discussed in the following sections. Before 

proceeding, it is important to emphasize that both portability 

and ease of use have been a key requirement during the 

conception and development of this technology. The use of the 

system, as it stands today, does not require for the user to 

know neither VHDL nor FPGA technology. It is possible for a 

user to exploit the groundbreaking speedups of this technology 

by simply calling the prototype libraries from a language like 

C or Fortran, using a traditional development environment in a 

CPU. 

To approach the mission-critical areas using a systematic 

methodology, the design of the solver is completely modular, 

in such a way that each component can be seen as an 

independently entity. Two different devices are part of the 

solver: a host PC and a reconfigurable computing platform. 

Figure 12 is a block diagram of the solver, when it is 

connected to a host PC. 

 

 

Figure 12. Block diagram of Accelogic LU-based solver as 

implemented in the current prototype. 

 

 

VII. DESCRIPTION OF PROTOTYPE 

A. Linear equation solver in the host PC 

The host PC is the device that runs the high-level 

applications that the final user manipulates. In order to 

guarantee full compatibility of the linear equation solver, a 

C++ library that interfaces the reconfigurable computing 

platform with traditional programming languages was 

developed. The library, which includes a wrapper that mimics 

the input and output parameters of the LAPACK function 

DGBTRS (which solves a system of linear equations using 

matrix factorization), can be easily called from virtually any 

high-level programming language, thus guaranteeing both 

portability and ease of use. The library includes only two 

internal functions that depend on the communication interface: 

“TransmitData” (reads problem data directly from memory 

and sends it to the solver platform) and “ReceiveData” 

(receives the result from the solver platform and writes it 

directly into the host PC memory). Current implementations of 

“TransmitData” and “ReceiveData” execute on a variety of 

communication channels, including very fast PCIe  

communication. This layout is of primary importance for the 

system to achieve hardware and interconnect portability. 

 

B. Linear equation prototype solver in the reconfigurable 

computing platform 

The linear equation solver that runs in the reconfigurable 

computing platform (a ML402 FPGA board from Xilinx
3
) is 

built up from four modules: Communications Block, Core 

Feeder, LU Core, and Core Solution Render. All the 

components are implemented using standard VHDL functions, 

in order to guarantee porting of the source code to a wide 

number of FPGA systems. Particular definitions that depend 

on the FPGA system that supports the solver are condensed in 

a parametric way in a definition package that is part of the 

source code.  

The four blocks communicate through high-speed buses, 

using a specific protocol and control system that makes the 

internal definition and design of each of the modules 

independent from the others. This is especially important in 

the case of the Communication Block, since different 

implementations of this module are required depending on the 

communication interface between the reconfigurable 

computing platform and the host PC. 

Another internal component of key importance is the 

interface to memory devices. There are different types of 

memory whose access protocol can change depending on 

factors like the reconfigurable computing device, host PC, 

technology, etc. Given the wide variety of memory devices, it 

is important to make the FPGA solver independent from the 

memory interface, so to guarantee portability. The current 

prototype implements memory portability wrappers, called 

“stacks.” A stack in the solver is a parameterizable minimal 

unit of memory, for which its internal implementation can be 

modified according to the particular memory device that is 

being used. Every component of the solver that requires the 

 
3 A second implementation exists in a very-high-performance hardware 

system procured from Dini Group, with exactly the same architecture. 
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use of memory accesses it through the stacks (instead of 

directly), making the migration between memory architectures 

completely transparent to the algorithm. This form of building 

the design is key for the system to achieve full reconfigurable-

computing hardware portability. 

Figure 13 shows a block diagram of the LU Core, the 

computational unit that implements the atomic LU 

architecture/algorithm combined with the solver of linear 

equations, as described in the subsection “Atomic LU 

algorithm in reconfigurable computing”.  Figure 14 and Figure 

15 show the block diagram of Core Feeder and the Core 

Solution Render, auxiliary modules that provide data to the LU 

Core, and process the solution delivered from the LU Core to 

be sent to the Communication Block. 

 

 

Figure 13. Block diagram of the LU Core 

architecture/algorithm that runs in the FPGA 

 

 

 

 

 

 

 

 

 

Figure 14. Block diagram of the Core Feeder 

 

 

Figure 15. Block diagram of the Core Solution Render 

 

 

VIII. RESULTS 

As a result of this work, a working prototype of an FPGA 

band linear equation solver was designed and implemented. 

The prototype was developed using a combination of VHDL 

and C++ programming languages. VHDL was used for the 

description of the algorithm in reconfigurable computing, 

while C++ was used to create the user interface, in such a way 

that final users only require including a standard C++ library 

call to integrate the solver in their applications. No knowledge 

of VHDL or reconfigurable computing is required from end-

users of this technology. 

Using this C++ library, a demo in MATLAB® was 

implemented, which runs a benchmark environment comparing 

the performance of the implemented FPGA algorithms against 

LAPACK’s solver functions DGBTRF and DGBTRS, which 

are the standard functions for solving banded systems of linear 

equations via LU factorization. The prototype was synthesized 

in the ML402 commercial off-the-shelf FPGA board 

distributed by Xilinx, as well as in the high-performance 

Virtex 6 system of Dini Group. The prototype, as it stands 

today, is portable to any Virtex-type FPGA board, and can be 
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plugged using a variety of communication interfaces to any PC 

running Windows. 

The prototype demonstrated a speedup of 60x when 

compared against the world’s most widely used software for 

linear equations (LAPACK) running on the Intel Woodcrest 

CPU. Additional benchmarks are being performed against 

other CPUs, and using other base FPGA platforms, and will be 

reported elsewhere. This level of performance is, to the 

authors’ knowledge, the fastest at the time of writing. Figure 

18 shows a contour plot of the experimental speedup 

measurements obtained as a function of both matrix size and 

matrix bandwidth . The plot on the left shows the speedups 

obtained using the Xilinx XCV4SX35 prototype board. The 

plot on the right shows the speedup obtained with the Xilinx 

XCV5LX220. Both plots were obtained comparing against the 

Intel Xeon Woodcrest (single core). The “area constraint” 

dashed line indicates the maximum bandwidth that can be 

supported by the use of a fully parallel solution with the 

hardware system. Larger matrix bands require either the use of 

a multi-FPGA board or a different FPGA algorithm. 

 

A. A remark on the interpretation and usability of the 60x 

speedup 

The results in Figure 16 compare raw processing power in 

the reconfigurable computing unit without considering the 

effects of the delay in the bilateral communications that must 

take place between the CPU and the FPGA. A real practical 

system should consider not only the FPGA computing speed, 

but also the communication speed, when assessing the 

performance of an FPGA algorithm. Suppose an FPGA system 

with a speedup factor of 1,000×. If the communication channel 

connecting the FPGA and the host CPU is extremely slow, 

then the time it would take to transmit the problem data and/or 

the solution would be longer than the time it would take the 

CPU to solve the problem by itself, thus making the effective 

speedup vanish entirely. The FPGA would be useless. 

 

 

Figure 16. Contour plots of the speedup of the FPGA linear 

equation solver, as a function of the size of the matrix (N) and 

the matrix bandwidth (i.e., the number of diagonals that cover 

all the data in the sparse matrix). For each plot, the thin bar on 

the right-hand side indicates the mapping associated with the 

color scale (in general, hot colors like red indicate larger 

speedup factors). 

 

The communication process plays a key role on the 

performance of a networked product, and its effect should not 

be underestimated.  

In order to illustrate the effect of the communications 

channel, Figure 17 shows an estimate of the overall speedups 

that are achievable when both computation and communication 

speeds are jointly considered. Note that, when the 

communication speed is zero, the overall speedup is always 

zero, whereas when the communication speed is infinite, the 

overall speedup is equal to 60×, the FPGA computation 

speedup. The larger the communication speed, the larger the 

effective speedup. The green vertical lines show typical 

speedups that are achievable with current (and inexpensive) 

commercial communication interfaces. PCI Express, for 

example, renders an effective speedup larger than 45x for the 

current prototype. 
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Figure 17. Effect of the communication speed on the 

performance of the solver when the matrix bandwidth is 30 

and N is large. The speed and corresponding speedup of three 

(currently commercially available) interfaces is shown: PCI-X, 

PCI Express, and HyperTransport. This plot considers neither 

data compression nor streaming techniques that will be 

introduced in this project later. The use of efficient data 

compression methods and streaming may increase the final 

speedup. 

IX. CONCLUSION 

The work demonstrates that a change in the mainstream 

FPGA programming paradigm is required in order to achieve 

accelerations of orders of magnitude ahead of implementations 

over von Neumann computer architectures. Several key 

innovations at the algorithm level are presented, such as the 

atomic LU factorization, algorithm-aware adaptive precision, 

and algorithm optimization at the bit level. Several important 

commercialization enablers are also presented, such as 

portability, ease of use, and algorithmic speed balance. The 

concurrent use of these algorithmic strategies and 
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commercialization enablers, breaks with the tradition of 

porting a computing algorithm to faster CPUs, and produces 

an acceleration of 60× for the LU factorization problem, even 

when available FPGA clock speeds are today much slower that 

those found in a high-end CPU.  

A wide range of applications in high performance 

computing is envisioned for this technology, encompassing 

industries as varied as aerospace and automotive vehicle 

design, oil & gas exploration, circuit simulation, 

biomechanics, medical image processing, geophysics, ad-hoc 

networking models, econometric models, linear programming, 

and many more. This wide collection of applications 

demonstrates the importance of maturing this area of 

knowledge and making the results promptly available to 

industry in the form of reliable commercial solvers. 
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